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Abstract

The percentage of acid-soluble components (ASC) and the aggregate granulometric distribu-
tion in mortars from two frescoes (Gothic and Flemish wall paintings) from Chiaravalle Abbey
were determined. Principal component analysis (PCA) of these data provided a “scores” plot
where Gothic plaster samples were clearly grouped, and separate from Flemish plaster samples.
Classification into the above two classes was achieved by the residual standard deviation values
of all samples fitted into disjoint principal components (PC) models according to the SIMCA
method. Furthermore the PCA scores for the “Flemish” class pointed out differences between
painted and internal plasters, indicating the use of layers with different composition and function,
while those for the “Gothic” class showed no grouping indicating either the use of a single mortar
or inhomogeneous layers. The above findings confirm and extend previous results on the
classification of mortars into groups with similar architectural function, pointing out the
generality of the SIMCA classification for both historical attribution and conservation studies.

Keywords: Flemish art; Gothic art; Mortar; Principal component analysis (PCA); Plaster; Soft
independent modelling of class analogy (SIMCA); Wall paintings

1. Introduction

The characterization of mortars used with different functions in artistic, architectural
and archaeological hand work, generally involves quantitative determination of the
mineral binder and of the sand aggregate by means of different parameters.

* Corresponding author.
¥ Presented at the 6th European Symposium on Thermal Analysis and Calorimetry, Grado, Italy, 11-16
September 1994.

0040-6031/95/$09.50 © 1995 — Elsevier Science B.V. All rights reserved
SSDI0040-6031(95)02533-2



798 G. Musumarra et al./Thermochimica Acta 269/270 (1995 ) 797-807

A simple analytical procedure for characterization of mortars is based on the
determination of a compositional parameter (the acid-soluble percentage) and of the
aggregate granulometric fractions, after chemical separation from the binder [1]. The
above procedure may be applied using small quantities of sample and is therefore
particularly useful for the study of painted plasters (frescoes and other wall paintings).
It minimizes sampling damage and is generally sufficient to provide significant data for
the characterization of such non homogeneous materials.

As the chemical methods used for the quantitative separation of the aggregate from
the mortar are generally based on acid attack, this procedure, providing multivariate
data, can be safely adopted only for acid-resistant aggregates (e.g. basically with
a silicate composition and, at the same time, when the binder is without hydraulic
components). Both conditions were satisfactorily fulfilled in the two frescoes examined.

Previous studies [2] achieved multivariate characterization of mortars from paint-
ing decorations of the Cupola of Florence Cathedral by processing the analytical data
through PCA classification according to the SIMCA (soft independent modelling of
class analogy) method [3, 4]. This statistical procedure has been already applied in
archaeometry for the classification of ancient Mesopotamian ceramics and clay [5] and
of Roman pottery [6].

The previous work [2] pointed out the possibility of obtaining a satisfactory
classification of mortars into groups of similar architectural function, such as mortars
between the bricks, mortars for covering plasters, and mortars used for painted
plasters, evidencing differences among areas painted by different artists. Furthermore
in the above case no doubt could exist on the functional role of the mortar, the sampling
being performed in large lacunas of the plasters where each sample could certainly be
assigned a given function. The analytical procedure was the same as that described
above, consisting in the determination of the percent acid-soluble component (% ASC)
and of the aggregate granulometric distribution.

In the present study we report the multivariate characterization and SIMCA
classification of mortars from two different wall paintings in a side chapel of the
Chiaravalle Abbey (Milano). Analysis and characterization have been carried out on
samples both from the external painted plasters and from the internal preparatory
layers with the aim of reciprocal comparison between the two paintings in order to
obtain a better understanding of plaster layering in the chapel.

2. Materials studied

The front wall of the chapel was painted in different periods. On the left part of the
Chapel there is a Flemish fresco painting, representing Christ in front of Pilato, while
the right side includes two scenes of a Gothic fresco (the nativity and a group of saints).

Samples (100-200 mg) of mortar were taken from areas with paint lacunas in order to
cause minimum damage. The sample distribution was as follows: 14 samples at different
depth from the Gothic area; 11 samples at different depth from the Flemish area.

A stratigraphic sampling was performed. Only the externally observable painted
layer can be safely attributed to the corresponding (Gothic or Flemish) plaster, while
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the internal layer may belong to the same plaster or to different ones. Moreover,
samples taken at the same depth may contain different plasters due to the inhomo-
geneous thickness of man-made layers.

3. Analytical methods

Following previously tested procedures [1] 100-200 mg of dry mortar were treated
with 7 ml of 1.4 M HCI for 60 min at room temperature. The insoluble residue was
centrifuged and washed with distilled water until neutrality of the solution. Percent
quantities were calculated as follows:

%ASC = 100(W,, — W,)/W.,

where W_ is the weight of the dry mortar sample and W, the weight of residue after acid
attack and wash.

Such residue, dried to constant weight, was separated into seven granulometric
fractions using seven 38 mm diameter sieves. The chosen series (Endecotts series DIN
4188 part 2) gives granulometric fractions which are significant for the characterization
of the mortars from painted plasters.

Each of the seven granulometric fractions (f, > 630 um; 630 pm > f, > 400 pum;
400 um > f; > 250 um; 250 pm > f, > 160 pm; 160 um > f5 > 100 pm; 100 pm > f, >
63 um; 63 pm > f, > 50 um; fg < 50 um) was dried, weighed and calculated as:

%t; = w/w, x 100

where t; = weight percent of fraction i, w;, = weight of fraction i, and w, = weight of the
dried aggregate.

4. Statistical methods

The results of PCA depend on the scaling of the data; in SIMCA the variables are
generally autoscaled by multiplying the variables by appropriate weights in order to
give them the same importance. Alternatively, block weighting can be used in order to
give the same importance to group of variables. In the present work block weighting
was in order to give 50% importance to the only chemically derived variable (% ASC)
and 50% to the group of granulometric measurements.

PCA using the SIMCA method and its applications have been presented in detail
[7,8], also in relation to mortar classification [2]. Consequently the statistical
procedure will only be summarized here. The SIMCA method carries out PCA on
a data matrix containing elements x,,, where index k is used for the experimental
measurements (variables) and index i for the samples (objects). Each element is
described by Eq. (1), where the number A of significant cross terms (components), and
the parameters p,,, t,, are calculated by minimizing the squared residuals e,,, after
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subtracting x, (the mean value of the i experimental quantities x,).

a=A

X = Xy + Zl LiaPak + €ik (1)
In this model, parameters x, and p,, (the loadings) depend only on the experimen-
tally measured variables and ¢, (the scores) only on the compounds. The deviations
from the model are expressed by the residual e;,. The number of significant components
(A) is determined using the cross-validation technique [3]. The relevance of each
variable in describing the mathematical model is given by its modelling power MPOW,
where S, is the residual standard deviation for each variable after 4 dimension and after

dimension zero.

Sg(A =A)
MPOW, = 1 _[ ] @

A=0
S(A=9

5. Results and discussion

Mortar and plaster samples were characterized by nine variables: the % acid soluble
component (4SC) and the granulometric distribution of the aggregate into eight
different portions. The % granulometric distribution does not sum to 100% due to
sample loss during the analysis, ranging from 1% to 9%. The latter loss might appear to
be high from an analytical point of view. However, this is not relevant to the following
statistical treatment, which fitting the data by a “soft” model, will anyway discard
information from the analytical data matrix. Moreover variable sample loss overcomes
the limitations due to the closure problem in the application of PCA to percentage data
[9-11].

The %ASC and the granulometric distributions are recorded in Table 1, together
with additional information useful for classification. In order to carry out the PCA, the
data were arranged into a matrix with the 25 mortar samples as “objects” and the
physicochemical measurements (% ASC and 8 granulometric percentages) as “vari-
ables”. Each of the 225 elements of the matrix is indicated in Eq. (1) as x;,

The SIMCA classification was achieved in two steps:

(i) Pattern recognition by PCA on the whole data set

This procedure provided a simplified picture of the multivariate data structure, by
means of the lcadings plot (related tc the variable information content) and of the
scores plot (an idea of the samples grouping).

(ii) SIMCA classification

Disjoint PCA models were calculated on each homogeneous data subset evidenced
by the whole set scores plot and samples classified according to their distance from the
appropriate PCA model.
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5.1. Pattern recognition

The PCA of the entire data matrix gave a model comprising two significant principal
components (Table 2). The first component explained 48.1% of the total variance and
the second one a further 19.2%; the planar model thus accounted for 67.3% of the total
variance. A third component was not significant according to cross validation [3].

Table 3 reports the variable parameters, i.e. the weights (w), the averages (%), the
loading values (p, and p,) and the modelling powers after two PCs for variable
1 (% ASC) and for variables 2-9, the granulometric variables.

The modelling powers, giving an estimate of how much each single variable
contributes to the two PC model, show that variables 3, 8, and 9 are not relevant in
describing the mathematical model. Moreover, the second PC is required to describe
the granulometric variables, mainly 5, 6 and 7. The PCA loadings plots (Fig. 1) shows
that the information provided by the chemical variable 1 (direction a) lies in a direction
orthogonal with respect to that (b) of granulometric variables 2—8; variable 9, very close
to zero, has little systematic variation.

The ¢, and t, values (the “scores” for samples 1-25) are listed in Table 4.

The piot of ¢, vs t, for all 25 examined samples (“scores plot”, Fig. 2) shows a clear

Table 2

PCA for classes A—C?

Class Objects in the reference set ® % Variance

A 1-25 67.3(48.1+19.2)
B 1,2,4-7,9-14 56.2(41.9+14.3)
C 15-19, 21-25 70.1(44.1 + 26.0)

2 Variables 1-9 were included in all classes; weights for each class are recorded in Table 3; ®* For numbering
see Table 1; € Total variance explained; % variances for 1st and 2nd PC reported in parentheses.

Table 3
Weight (w), PC loadings (p) and modelling power (MPOW) for variables 1-9 in class A, and weights for
classes B and C

Var® Class A Class B Class C
w Py P2 MPOW, MPOW, — MPOW; w w
1 0.065 0.920 0.359 0.759 0.198 0.137 0.266
2 0.038 0.145 —-0.372 0.080 0.303 0.061 0.030
3 0.079 0.098 —0.179 0.023 0.038 0.091 0.066
4 0.132 —-0.073 0.299 0.003 0.152 0.184 0.101
5 0.096 —0.184 0.435 0.148 0.586 0413 0.068
6 0.168 —0.196 0.420 0.172 0.561 0.723 0.117
7 0.168 —0.115 0.455 0.040 0.504 0.257 0.123
8 0.519 —0.152 0.186 0.091 0.050 0.720 0.435
9 0.126 0.092 0.068 0.000 0.000 0.346 0.085

2 For variable numbering see Table 1; modelling powers calculated by use of Eq. (2).
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Fig. 1. p,—p, “Loadings” plot for class A.

grouping of the Gothic samples on the right of the plot. Therefore the first score ¢,
differentiates Gothic mortars from Flemish ones, regardless of their function (i.e.
covering or painted plasters). Moreover Flemish mortars, located on the left in Fig. 2,
exhibit a clear grouping of surface Flemish samples (15, 18, 21, 23) in the upper left
located on the left in Fig 2 of the plot, indicating that the second score differentiates
Flemish painted plasters (FPP), characterized by high ¢, values, from Flemish covering
plasters (FIP). Fig. 2, giving a clear insight into the total data set structure, provides the
basis for SIMCA classification.

5.2. SIMCA classification

SIMCA classification implies calculation of PCA models for two separate classes
(Gothic and Flemish samples, classes B and C, respectively), fitting of new samples
(objects) into each model, and classification of unknown samples by means of their
residual standard deviation (RSD). Table 2 reports the samples used as training set for
classes B and C (Gothic and Flemish samples respectively). Three objects, (3, 8 and 20),
whose appurtenance to a given class is not evident from Fig. 2, were kept out of the
training set to be used as a test set for both models.

Table 2 reports the results of the PCA for class B containing 108 elements (12 objects,
9 variables) and for class C containing 90 elements (10 objects, 9 variables). The
explained variances are similar to those found for class A. The weights adopted in PCA,
calculated by block weighting (see section 4), are recorded in Table 3.

Fig. 3, the scores plot for class B, shows no clear grouping of the samples according to
sampling depth (painting plaster, internal plaster), which might be due to the use of
similar mortars for internal and external layers or to an inhomogeneous layer
thickness.
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Table 4
PC “Scores” (class A), and residual standard deviations (classes B and C) for mortar and plaster samples 1-25
Sample? Class A Class B Class C
RSD® RSD*
t t,
1 0.188 —0.263 0.09 [0.44]
2 0.114 —0.316 0.04 [0.26]
3 —-0.070 —-0.047 [0.29] [0.23]
4 1.146 —0.142 0.22 [0.61]
5 0.935 0.047 0.16 [0.58]
6 1.281 0.485 0.13 [0.68]
7 1.374 0.370 0.16 [0.71]
8 0.184 —0.639 0.22 [0.32]
9 1.470 0.231 0.13 [0.75]
10 0.866 —0.026 0.07 [0.54]
11 1.271 0.350 0.06 [0.78]
12 0.783 0.348 0.20 [0.58]
13 0.759 0.398 0.15 [0.49]
14 1.193 -0.114 0.20 [0.64]
15 —1.445 1.147 [1.20] 0.07
16 -1.001 —0.349 {0.553 0.11
17 -1.077 —0.671 0.22 0.16
18 —1.770 0.873 [1.15] 0.10
19 -0.399 0.115 [0.52] 0.06
20 —0.520 —0.511 0.12 0.18
21 —1.295 1.071 [1.08] 0.06
22 —-0911 —1.012 [0.61] 0.12
23 —1.504 0.856 [1.10] 0.06
24 —0.882 —0.691 [0.41] 0.15
25 —0.688 —1.521 [0.98] 0.09

2 For additional information on samples see Table 1; ® Samples with RSD smaller than 1.5 x 0.17 = 0.26
belong to class B, other samples in parentheses; © Samples with RSD smaller than 1.5 x 0.12 = 0.18 belong
to class C, other samples in parentheses.

Grouping of superficial samples characterized by low ¢, values (15, 18, 21, 23) in the
lower left part of Fig. 4 (the scores plot for class C) suggests the interpretation of ¢, as an
index for sampling depth in Flemish mortars (see Table 1).

The statistical classification procedure of the SIMCA program implies fitting of all
samples (learning + test sets) to subset classes B and C. In order to assign samples
(objects) to a given class, each sample should be fitted into the class PCA model and its
residual standard deviation (RSD) calculated [7]. The object belongs to a given class if
its RSD is smaller than 1.5 times the class RSD (in the present case 1.5 x 0.17 = 0.26 for
class B and 1.5 x 0.12 = 0.18 for class C).

RSD values, reported in the Table 4 and plotted in Fig. 5, correspond to the
orthogonal distances between each sample (object) and class B. Assuming as belonging
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Fig. 3. t,—t, “Scores” plot for class B.

to class B all samples with RSD < 0.26 and to class C those with RSD < 0.18, the
SIMCA method correctly classifies all samples in the reference set of both classes apart
from 17, which could be attributed to either class. As regards test set samples, 8 is
correctly assigned to class B, while 3 and 20 remain with uncertain assignment.
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6. Conclusions

PCA of 25 mortar samples from the Chiaravalle Abbey wall paintings, characterized
by the acid soluble component percentage and by eight granulometric fractions
provided the following information:
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(a) actual analytical classification into two different groups of mortars belonging,
respectively, to the Gothic painting and to the Flemish one, regardless of their function
(painting or internal plasters), by means of the first PC scores in the overall model;

(b) differentiation of Flemish mortars into painted plasters and internal plasters by
means of the second PC scores both in the overall model and in the Flemish class
model; and

(c) no clear indication of mortar function in the Gothic area.

These results can be given in the following interpretation:

(a) Gothicand Flemish artists actually used different mortars both internally and for
painting;

(b) Flemish artists used different mortars as the internal plaster and as the painted
plaster;

(¢) Gothic artists either used the same mortar for the internal and the external
plasters or applied the internal plaster in such an inhomogeneous thickness that it is not
possible to distinguish it from the painted plaster because samples taken at definite
depth are unavoidable mixtures of the two plaster layers.

The above findings confirm and extend previous results on the classification of
mortars into groups with similar architectural function pointing out the generality of
the SIMCA classification for both historical attribution and conservation studies.
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